skip to main content


Search for: All records

Creators/Authors contains: "Zheng, Guangqu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this article, we study the hyperbolic Anderson model driven by a space-timecoloredGaussian homogeneous noise with spatial dimension$$d=1,2$$d=1,2. Under mild assumptions, we provide$$L^p$$Lp-estimates of the iterated Malliavin derivative of the solution in terms of the fundamental solution of the wave solution. To achieve this goal, we rely heavily on theWiener chaos expansionof the solution. Our first application arequantitative central limit theoremsfor spatial averages of the solution to the hyperbolic Anderson model, where the rates of convergence are described by the total variation distance. These quantitative results have been elusive so far due to the temporal correlation of the noise blocking us from using the Itô calculus. Anovelingredient to overcome this difficulty is thesecond-order Gaussian Poincaré inequalitycoupled with the application of the aforementioned$$L^p$$Lp-estimates of the first two Malliavin derivatives. Besides, we provide the corresponding functional central limit theorems. As a second application, we establish the absolute continuity of the law for the hyperbolic Anderson model. The$$L^p$$Lp-estimates of Malliavin derivatives are crucial ingredients to verify a local version of Bouleau-Hirsch criterion for absolute continuity. Our approach substantially simplifies the arguments for the one-dimensional case, which has been studied in the recent work by [2].

     
    more » « less
  2. In this paper, we present an oscillatory version of the celebrated Breuer–Major theorem that is motivated by the random corrector problem. As an application, we are able to prove new results concerning the Gaussian fluctuation of the random corrector. We also provide a variant of this theorem involving homogeneous measures. 
    more » « less